10 research outputs found

    胃腺腫の長期予後に関する検討 ; 腫瘍関連組織球は胃腺腫における癌の発生に関与する

    Get PDF
    内容の要旨, 審査の要旨広島大学(Hiroshima University)博士(医学)Doctor of Philosophy in Medical Sciencedoctora

    Fast and accurate tumor segmentation of histology images using persistent homology and deep convolutional features

    Get PDF
    Tumor segmentation in whole-slide images of histology slides is an important step towards computer-assisted diagnosis. In this work, we propose a tumor segmentation framework based on the novel concept of persistent homology profiles (PHPs). For a given image patch, the homology profiles are derived by efficient computation of persistent homology, which is an algebraic tool from homology theory. We propose an efficient way of computing topological persistence of an image, alternative to simplicial homology. The PHPs are devised to distinguish tumor regions from their normal counterparts by modeling the atypical characteristics of tumor nuclei. We propose two variants of our method for tumor segmentation: one that targets speed without compromising accuracy and the other that targets higher accuracy. The fast version is based on the selection of exemplar image patches from a convolution neural network (CNN) and patch classification by quantifying the divergence between the PHPs of exemplars and the input image patch. Detailed comparative evaluation shows that the proposed algorithm is significantly faster than competing algorithms while achieving comparable results. The accurate version combines the PHPs and high-level CNN features and employs a multi-stage ensemble strategy for image patch labeling. Experimental results demonstrate that the combination of PHPs and CNN features outperforms competing algorithms. This study is performed on two independently collected colorectal datasets containing adenoma, adenocarcinoma, signet and healthy cases. Collectively, the accurate tumor segmentation produces the highest average patch-level F1-score, as compared with competing algorithms, on malignant and healthy cases from both the datasets. Overall the proposed framework highlights the utility of persistent homology for histopathology image analysis

    Schlafen family member 11 indicates favorable prognosis of patients with head and neck cancer following platinum-based chemoradiotherapy

    No full text
    Recently, Schlafen family member 11 (SLFN11) has been reported to increase the sensitivity of cancer cells to DNA-damaging agents, including platinum derivatives; thus, SLFN11 may be a predictive biomarker for platinum-based chemoradiotherapy (CRT). In this study, we examined whether SLFN11 expression was associated with the therapeutic outcome of platinum-based CRT in head and neck squamous cell carcinoma (HNSCC). We performed immunohistochemical analyses for SLFN11 expression in 161 HNSCC tissues from patients who had been administered cisplatin-based CRT and examined the correlation between SLFN11 expression and progression-free survival (PFS). Additionally, SLFN11 expression was examined in 10 paired samples obtained before and after CRT in patients with local failure. Furthermore, in vitro experiments were performed using several HNSCC cell lines and isogenic SLFN11-knockout cells to assess the association between SLFN11 expression and drug sensitivity. PFS was found to be significantly better in the SLFN11-positive group than in the SLFN11-negative group among the 161 patients (5-year PFS: 78.8% vs. 52.8%, respectively, p < 0.001). Similar results were observed for the PFS at each primary site. The percentage of SLFN11 positivity was lower in tumor samples from patients with local failure after CRT than that in the corresponding primary tumors before CRT in 8 of 10 cases. Results of the in vitro assay demonstrated that SLFN11-knockout cells exhibited reduced sensitivity to DNA-damaging agents but not to the non-DNA-damaging agent docetaxel. Our findings suggest that SLFN11 may serve as a potential biomarker for predicting the response of HNSCC patients to platinum-based CRT

    Epigenetic suppression of SLFN11 in germinal center B-cells during B-cell development.

    No full text
    BackgroundSLFN11 has recently been reported to execute cancer cells harboring replicative stress induced by DNA damaging agents. However, the roles of SLFN11 under physiological conditions remain poorly understood. Germinal center B-cells (GCBs) undergo somatic hypermutations and class-switch recombination, which can cause physiological genotoxic stress. Hence, we tested whether SLFN11 expression needs to be suppressed in GCBs during B-cell development.ObjectiveTo clarify the expression profile of SLFN11 in different developmental stages of B-cells and B-cell-derived cancers.MethodsWe analyzed the expression of SLFN11 by mining cell line databases for different stages of normal B-cells and various types of B-cell-derived cancer cell lines. We performed dual immunohistochemical staining for SLFN11 and B-cell specific markers in normal human lymphatic tissues. We tested the effects of two epigenetic modifiers, an EZH2 inhibitor, tazemetostat (EPZ6438) and a histone deacetylase inhibitor, panobinostat (LBH589) on SLFN11 expression in GCB-derived lymphoma cell lines. We also examined the therapeutic efficacy of these drugs in combination with cytosine arabinoside and the effects of SLFN11 on the efficacy of cytosine arabinoside in SLFN11-overexpressing cells.ResultsSLFN11 mRNA level was found low in both normal GCBs and GCB-DLBCL (GCB like-diffuse large B-cell lymphoma). Immunohistochemical staining showed low SLFN11 expression in GCBs and high SLFN11 expression in plasmablasts and plasmacytes. The EZH2 and HDAC epigenetic modifiers upregulated SLFN11 expression in GCB-derived lymphoma cells and made them more susceptible to cytosine arabinoside. SLFN11 overexpression further sensitized GCB-derived lymphoma cells to cytosine arabinoside.ConclusionsThe expression of SLFN11 is epigenetically suppressed in normal GCBs and GCB-derived lymphomas. GCB-derived lymphomas with low SLFN11 expression can be treated by the combination of epigenetic modifiers and cytosine arabinoside
    corecore